Publications


Independent Career

 

5. A Ni–Al Hydride Cluster Bearing Site-Differentiated Al Centers: Demonstration of Olefin Insertion and Alkyl Transfer.

Gipper, J. R., Gonzalez-Eymard, S., Abdoullaeva, J., Caricato, M., Shoshani, M. M*., Inorg. Chem. 2025, 64, 43, 21317-21322.

A Ni–Al Hydride Cluster Bearing Site-Differentiated Al Centers: Demonstration of Olefin Insertion and Alkyl Transfer

4. Synthesis and Characterization of NiAl-Hydride Heterometallics: Perturbing Electron Density Within Al–H–Ni Subunits.

Gonzalez, A. G., Gonzalez, F., De Leon, E., Birkhoff, K. M., Yruegas, S., Chen, H.*, Shoshani, M. M.*, Dalton Trans. 2024, 53 (47), 18932-18945

(Themed Issue: New Talents: The Americas)

Synthesis and characterization of NiAl-hydride heterometallics: perturbing electron density within Al–H–Ni subunits

3. Accessing Reactive Metal Hydrides Through Designed Heterometallic Bridges.

Gonzalez, F., De Leon, E., Shoshani, M. M.*, Synlett. 2024. 35 (18), 2058-2062

​(Invited Synpacts article)

Site-Specific Binding for Heterometallic Hydrides

2. Amplifying Reactivity of Metal Hydrides: A Heterotrimetallic NiAl22-H)2 Catalyst for the Facile Dearomatization of N-Heterocycles.

De Leon, E., Gonzalez, F., Bauskar, P, Gonzalez-Eymard, S., De Los Santos, D., Shoshani, M. M.* Organometallics. 2023. 42, 6, 435–440

Amplifying Reactivity of Metal Hydrides

1. Cooperative Heterometallic Platforms Enabling Selective C–H Bond Activation and Functionalization of Pyridines.

Shoshani, M. M.* Cell Rep. Phys. Sci. 2023 4(4)

(Invited as part of a special issue on base metal catalysis)​

Cooperative Heterometallic Platforms Enabling Selective C–H Bond Activation and Functionalization of Pyridines.

Prior to Independent Career

15. Nickel-Based Heterometallic Catalysts for Ethylene-Acrylate Copolymerization: Interrogating Effects of Secondary Metal Additives. Xiong, S., Shoshani, M. M., Nett, A. J., Spinney, H. A., Henderson, B. Agapie, T.* Organometallics. 2023. ASAP

14. Breaking bonds and breaking rules: [(iPr3P)Ni]5H4 as the key intermediate in cooperative C-H activation and carbon atom abstraction from alkenes and catalytic stereospecific dimerization of norbornene. Liu, J., Shoshani, M. M., Sum, K., Johnson, S. A.* Chem. Commun. Accepted ChemRxiv 10.26434/chemrxiv-2022-2r6d5

13. Phosphine-Phenoxide Nickel Catalysts for Ethylene/Acrylate Copolymerization: Olefin Coordination and Complex Isomerization Studies Relevant to the Mechanism of Catalysis. 1Shoshani, M. M., 1 Xiong, S., Lawniczak, L. J., Zhang, X., Miller III, T. F.,* Agapie, T.* ( 1=equally contributing authors) Organometallics, 2022. 41, 15, 2119–2131

12. Efficient Copolymerization of Acrylate and Ethylene with Neutral P,O-Chelated Nickel Catalysts: Mechanistic Investigation of Monomer Insertion and Chelate Formation. 1 Xiong, S., 1 Shoshani, M. M., 1 Zhang, X., Spinney, H., Nett, A., Henderson, B., Miller III, T. F*., Agapie, T.* ( 1=equally contributing authors) J. Am. Chem. Soc, 2021, 143, 17, 6516–6527.

11. Ligand Architectures Supporting Ni3 Clusters: Isolation of a High Oxidation State Ni Cluster. Shoshani, M. M., Agapie, T.* Chem. Commun, 2020, 56, 11279-11282.

10. Dismantling of CC and CO bonds of Vinyl Ethers by the [(iPr3P)Ni]5H6. Cluster. Shoshani, M. M., Semeniuchenko, V., Johnson, S. A.* Chem. Eur. J. 2018, 24, 14282-14289.

9. Mechanistic Insight Into H/D Exchange by a Pentanuclear Nickel cluster. Shoshani, M. M., Liu. J.Y, Johnson, S. A.,* Organometallics. 2018, 37 (1), 116–126.

8. Versatile (η6-arene)Ni(PCy3) Nickel Monophosphine Precursors. Zhu, S., Shoshani, M. M., Johnson, S. A.,* Chem. Commun. 2017, 53, 13176-13179.

7. Synthesis of Surface-Analogue Square Planar Tetranuclear Nickel Hydride Clusters and Bonding to µ4-NR, O, and BH Ligands Shoshani, M. M., Beck, R., Wang, X., Mcglachlin, M., & Johnson, S. A.,* Inorg. Chem. 2017, 57, 2438-2446. *Front Cover. Commentary at http://cins.ca/tag/catalysts/

6. Cooperative Carbon-Atom Abstraction from the Core of a Pentanuclear Nickel Cluster. Shoshani, M. M., & Johnson, S. A.* Nat. Chem. 2017, 9, 1282-1285.

5. Facile Deep and Ultradeep Hydrodesulfurization by the [(iPr3P)Ni]5H6 Cluster Compared to Mononuclear Ni Sources. Shoshani, M. M., & Johnson, S. A.* Inorg. Chem. 2015, 54(24), 11977-11985.

4. Mechanistic Insight Into Carbon–Fluorine Cleavage With a (iPr3P)2Ni Source: Characterization of (iPr3P)2NiC6F5 as a Significant Ni (I) Byproduct in the Activation of C6F6. Hatnean, J. A., Shoshani, M. M., & Johnson, S. A.* Inorg. Chim. Acta. 2014, 422, 86-94. Special issue in honor of T. Don Tilley

3. Synthesis and Chemistry of Bis(triisopropylphosphine) Nickel (I) and Nickel (0) Precursors. Beck, R., Shoshani, M. M., Krasinkiewicz, J., Hatnean, J. A., & Johnson, S. A.* Dalton Trans. 2013, 42(5), 1461-1475.

2. Catalytic Hydrogen/Deuterium Exchange of Unactivated Carbon–Hydrogen Bonds by a Pentanuclear Electron‐Deficient Nickel Hydride Cluster. Beck, R., Shoshani, M. M., & Johnson, S. A.* Angew. Chem. Int. Ed. 2012, 124(47), 11923-11926.

1. A Mechanistic Investigation of Carbon–Hydrogen Bond Stannylation: Synthesis and Characterization of Nickel Catalysts. *Johnson, S. A., Doster, M. E., Matthews, J., Shoshani, M. M., Thibodeau, M., Labadie, A., Hatnean, Dalton Trans. 2012, 41(26), 8135-8143.